Breastmilk Iodine Concentrations Following Acute Dietary Iodine Intake

Angela M. Leung, MD, MSc
Lewis E. Braverman, MD
Xuemei He, MD
Timothy Heeren, PhD
Elizabeth N. Pearce, MD, MSc

1Section of Endocrinology, Diabetes, and Nutrition; Boston Medical Center; Boston University School of Medicine; Boston MA
2Department of Biostatistics; Boston University School of Public Health; Boston MA

Word count: 2,173

Short title: Breastmilk iodine pattern following KI administration

Tables: 1

Figures: 1

Funding/acknowledgements: This work was supported by NIH/NICHD 1 K23 HD068552 01 and the Boston University Clinical & Translational Science Institute (1UL1RR025771).
ABSTRACT

Background: Breastmilk iodine levels may vary temporally in response to recent changes in dietary iodine intake. We assessed the effect of and time to peak breastmilk iodine levels after potassium iodine ingestion, which has never been studied and is important toward interpretation of studies of breastmilk iodine measurements.

Methods: Sixteen healthy lactating Boston-area women with no known thyroid disease were each given 600 µg oral potassium iodide (KI) (456 µg iodine) after an overnight fast. Iodine was measured in breastmilk and urine at baseline and hourly for 8 hours following iodine intake. All dietary iodine ingested during the study period was also measured.

Results: Mean age of mothers was 30.2±4.1(SD) years. Median (interquartile range) baseline iodine levels were 45.5 (34.5-169.0) µg/L (breastmilk) and 67.5 (57.5-140.0) µg/L (urine). Following 600 µg KI administration, median increase in breastmilk iodine levels above baseline was 280.5 (71.5-338.0) µg/L, and median peak breastmilk iodine concentration was 354 (315-495) µg/L. Median time to peak breastmilk iodine levels following KI administration was 6 (5-7) hours. Dietary iodine sources provided an additional 36-685µg iodine intake during the 8-hour study.

Conclusions: Following ingestion of 600 µg KI, there is a measurable rise in breastmilk iodine concentrations, with peak levels occurring at 6 hours. These findings strongly suggest that breastmilk iodine concentrations should be interpreted in relation to recent iodine intake.

Keyword: breastmilk, iodine, lactation
INTRODUCTION

Normal thyroid function, important for fetal and neonatal neurodevelopment (1), depends on sufficient dietary iodine intake. Breastfed infants rely on maternal dietary iodine for their iodine nutrition. As iodine is concentrated into breastmilk at a gradient 20-50% higher than in plasma (2) through increased expression of the sodium iodide symporter (NIS) in lactating breast cells (3), dietary iodine requirements are higher during lactation. The Institute of Medicine’s Recommended Dietary Allowance (RDA) for dietary iodine intake is 290 µg/day for lactating women, compared to 150 µg/day recommended for non-pregnant, non-lactating women (4).

Although there are no normative ranges for breastmilk iodine levels, the recommendations for iodine intake by the U.S. Institute of Medicine are 110 µg/day for infants 0-6 months old, 130 µg/day for infants 7-12 months old, and 90 µg/day for children 1-8 years old (4). However, there are insufficient data to determine iodine turnover in infants, and the recommendations for infants 0-6 and 7-12 months are Adequate Intake (AI) levels, which are based on dietary intake estimates in healthy people, rather than RDA levels. For infants 0-12 months old, AI levels are based on a mean breastmilk iodine concentration of 146 µg/L measured in 37 U.S. women (5) and the assumption that infants ingest an average of 0.78 L/day of breastmilk during 0-6 months of age and 0.60 L/day during 6-12 months of age (4).

A recent review of 14 global studies which have measured breastmilk iodine levels reported a wide range of mean or median concentrations (13-155 µg/L) among women living in areas of varying iodine sufficiency (2), while other reviews have reported breastmilk iodine concentrations ranging from 5.4-2170 µg/L (medians) (6) and
9-1267 µg/L (means) (7). Observational data regarding breastmilk iodine levels in lactating women in the U.S. are extremely limited. We reported that the median breastmilk iodine concentration in 57 Boston-area women was 155 µg/L (8), similar to that of a 1984 study of 37 women (178 µg/L) (5). Although the U.S. is considered generally iodine sufficient, the median breastmilk iodine levels in our study were far higher than those observed recently by Kirk and colleagues in three studies based mostly in Texas (33.5, 43.0, and 55.2 µg/L) (9-11). The range of breastmilk iodine concentrations in our sample was wide, from 2.7-1968 µg/L (8), and some women may have been providing insufficient breastmilk iodine to their infant.

Sampling of breastmilk for iodine measurements may be affected by physiologic fluctuations of iodine content. Kirk et al. recently reported that breastmilk iodine levels were higher in women who used iodized salt compared to women taking an iodine-containing multivitamin (12). In small, observational studies, breastmilk iodine levels have been reported to increase during the first post-partum month (13), decrease during the first 6 post-partum months (14), and vary temporally day-to-day (10). Kirk et al. measured levels of breastmilk iodide (which comprises 89-90% of breastmilk iodine; S. Pino, unpublished) in 108 total breastmilk samples provided by 10 U.S. lactating women over a 3 day period (10). Considerable variation of breastmilk iodide levels within and between individuals was found (median, 55.2 µg/L; range, 3.1-334 µg/L; mean±SD, 87.9±80.9 µg/L), suggesting that variable sampling of breastmilk for iodine measurements relative to the timing of peak concentrations may lead to incorrect conclusions regarding maternal breastmilk iodine sufficiency in population studies. In a
small sample of 30 women, we previously reported no significant variation in breastmilk iodine content assessed sequentially during a single feed (8).

Whether breastmilk iodine concentrations and the availability of adequate iodine nutrition to the breastfed infant are affected by the physiologic response to dietary iodine ingestion has not been studied. The present study was done to acutely assess breastmilk iodine concentrations following maternal dietary iodine ingestion among U.S. women.

METHODS

Study protocol

The Boston University Medical Campus Institutional Review Board approved the study. Sixteen healthy lactating women from the Boston area with no known thyroid disease; history of thyroid hormone, anti-thyroid medications, or amiodarone use; or iodinated radiologic contrast administration within the previous 3 months were recruited and provided inform consent. Information regarding subjects’ age, United States Office of Management and Budget race and ethnicity code, medications, multivitamin use, and smoking status was collected. Although an imperfect measure of iodine status, subjects also completed a dietary iodine questionnaire to gather information regarding their estimated iodine intake over the previous 3 days of the study.

Following an overnight fast, each subject was administered 600 µg of potassium iodide orally [2 tablets of Walgreen’s Finest Prenatal Multivitamin obtained from a single lot (each listed to contain 75 µg of potassium iodide) and 2 tablets of a Pure Encapsulations potassium iodide supplement (each listed to contain 225 µg potassium...
iodine]). The iodine content of each potassium iodine source was measured in duplicate to confirm the listed amount, as labeled content may be different from that of actual measurements (15). From these measurements, each subject was administered approximately 752 µg of potassium iodide (572 µg iodine). Subjects who routinely took an iodine-containing multivitamin or supplement did not do so during the 24 hours prior to ingestion of the potassium iodide.

Each subject provided breastmilk and spot urine samples at baseline and hourly for 8 hours following potassium iodine administration. Mothers were encouraged to breastfeed their infants or pump breastmilk as needed. The timing (and for consumed products, amounts) of all breastfeeding, pumping of breastmilk, and ingestion of meals and beverages during the 8-hour study period were recorded relative to the hourly breastmilk and spot urine collections. Duplicate portions of all food and beverages consumed during the study were also measured for their iodine content.

Laboratory measurements

All breastmilk and spot urine samples were stored at -80°C prior to measurement. Iodine levels in the potassium iodide-containing multivitamin and supplement and in all ingested food and beverages were measured spectrophotometrically using a Technicon Autoanalyzer (Technicon Instrument, Inc., Tarrytown, NY) by a modification of the method of Benotti et al. (16). In cases where the initial two measurements were not within 15% of each other, a third or a fourth measurement was obtained and the average of all measurements reported.
Statistical analysis

Sample size determination of 16 individuals was based on detecting an effect size of 0.75, with 80% power at the 0.05 level, for a paired t-test comparing change in breastmilk iodine concentrations over time. Breastmilk iodine concentrations are reported as medians and interquartile ranges at the 9 timepoints (baseline, then hourly for 8 hours after iodine ingestion). The Wilcoxon signed rank test was used to assess pairwise unadjusted changes in median breastmilk iodine levels over time, and mixed effects regression models for repeated measures data were used to examine changes in breastmilk iodine levels over the entire study period and to adjust for breastfeeding (measured as a yes/no categorical variable at each of the timepoints; breastmilk volume was not measured or estimated). Time to peak breastmilk iodine levels after ingestion of a known iodine load are described through the median and interquartile range. Data processing and statistical analyses were performed using SAS version 9.2 (SAS Institute, Cary, NC) and Excel.

RESULTS

Descriptive data for the subjects are shown in Table 1. None of the subjects reported regular use of any iodine-only or kelp supplements. From foodstuffs that subjects consumed, dietary iodine sources provided an additional 36-685 µg of iodine intake beyond the study supplements during the 8-hour study period.

Median (interquartile range, IQR) baseline iodine levels were 45.5 (IQR, 34.5-169.0) µg/L in breastmilk and 67.5 (IQR, 57.5-140.0) µg/L in urine. Following 600 µg
potassium iodide oral administration, there was a significant median increase in breastmilk iodine levels (280.5; IQR, 71.5-338.0 µg/L) above baseline (p<0.01); the median peak breastmilk iodine concentration was 354 (IQR, 315-495) µg/L (Figure 1). The median time to peak breastmilk iodine levels following potassium iodide administration was 6 (IQR, 5-7) hours (Figure 1). When adjusted for breastfeeding during the study period, the increase in breastmilk iodine levels over time, peak breastmilk iodine concentration, and time to peak breastmilk iodine levels were not substantially different from their unadjusted values (data not shown).

Median urinary iodine concentrations (192 µg/L; IQR 132.5-327 µg/L) remained stable over the study period. Aggregate median breastmilk and urinary iodine concentrations were not significantly correlated (p=0.39).

DISCUSSION

This study demonstrates that there is a measurable rise in breastmilk iodine concentrations, with peak levels occurring at 6 hours, following acute oral ingestion of 600 µg potassium iodide. These findings provide important data regarding the physiologic variation of breastmilk iodine levels and strongly suggest that breastmilk iodine sampling should be interpreted in relation to recent iodine intake.

Adequate iodine intake is particularly important for exclusively breastfed infants, in whom breastmilk is the sole source of iodine nutrition during a critical period of growth and development. Iodine deficiency affects over 241 million school-age children (nearly 30%) and is the leading cause of preventable mental retardation worldwide (17). Insufficient maternal iodine during pregnancy and the immediate post-partum period
results in neurological and psychological deficits in children (18). The IQ levels of children living in severely iodine deficient areas are lower than those living in iodine sufficient areas and are improved with iodine supplementation (19).

Assessment of goiter rates can be used as a measure of population iodine sufficiency (20). One small study demonstrated that thyroid gland volumes of breastfed infants were smaller compared to infants fed iodine-unsupplemented formula for 3 months (21). Another measure of population iodine sufficiency are adequate median urinary iodine concentrations (requiring a minimum of 125 individuals) (22) ≥100 µg/L in infants <2 years old and in nonpregnant adults (23). Urinary iodine concentration thresholds have been identified for populations, but not for individuals, given significant day-to-day variation of iodine intake (24). Although U.S. dietary iodine has been considered adequate since the 1920s, there are very limited data regarding median urinary iodine concentrations of infants in the U.S. We reported that in 57 Boston-area partially or exclusively breastfed infants (mean age, 1.6 months), median urinary concentration was 197.5 (range 40-785 µg/L) (25).

According to data from the National Health and Nutrition Examination Survey (NHANES), the median urinary iodine concentration in U.S. adults decreased by over 50% from the early 1970s to the early 1990s (26). Of particular concern is the fact that the prevalence of urinary iodine values <50 µg/L among women of childbearing age increased by almost 4-fold, from 4% to 15%, during this period. In the most recent NHANES survey (2005-2008), although the median urinary iodine concentration of pregnant women was 125 µg/L, 35.3% had urinary iodine levels <100 µg/L (27). Thus,
while the overall U.S. adult population remains iodine sufficient, a subset of pregnant and lactating women may have inadequate dietary iodine intake.

Sources of iodine in the U.S. diet have been difficult to identify because there are a wide variety of potential sources, there is a wide amount of variation in the iodine content of some common foods, and food iodine content is not listed on packaging. For this reason, a public health approach to iodine supplementation in the U.S. has been advocated. The American Thyroid Association has recommended that women in North America receive dietary supplements containing 150 µg iodine daily during conception planning, pregnancy, and lactation and that all prenatal vitamins contain 150 µg of iodine (28). These recommendations have not yet been adopted. Only 20.3% of pregnant and 14.5% of lactating women in the U.S. take a supplement containing iodine, according to NHANES data (29). Currently, 114 of 223 (51%) brands of prescription and non-prescription prenatal multivitamins marketed in the U.S. list iodine as a constituent, and many of those which do contain iodine do not contain the labeled amount, especially when kelp is the iodine source (15).

The results of our study are important in the evaluation of excessive iodine consumption to the breastfed infant. Guidelines from the World Health Organization recommend a maximum iodine intake of 180 µg/day for infants <2 years old (30). The U.S. Institute of Medicine has not established recommendations for infants 0-12 months, but recommends a tolerable upper limit of 200 µg iodine daily for children 1-3 years old (4). In one Korean study of 50 women and their breastfed infants, breastmilk iodine levels were generally elevated and ranged from 198-8484 µg/L (thought to be secondary to the increased consumption of seaweed soup by many Korean women
during the post-partum period) (31), which was associated with cases of neonatal subclinical hypothyroidism (32). Finally, as the U.S. is considered generally iodine sufficient, the timecourse to peak breastmilk iodine levels of the women in the present study may not be applicable to individuals living in regions of inadequate iodine nutrition, in whom iodine reserves may be diminished.

We report that there is a measurable rise in breastmilk iodine concentrations following an acute dietary iodine load, with peak levels occurring at 6 hours. These findings strongly suggest that breastmilk iodine concentrations should be interpreted in relation to recent iodine intake. The results of the present study are not intended to alter clinical or breastfeeding practices, but are expected to broaden the understanding of when breastmilk should be appropriately sampled relative to dietary iodine ingestion.
REFERENCES

[25] Leung, AM, Braverman, LE, Schuller, K, Roussilhes, A, Jahreis, K, He, X, Pearce, EN Breastmilk iodine, perchlorate, and thiocyanate concentrations: effects on infant thyroid function. Thyroid (in press).
Table 1. Subject characteristics (n=16)

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>30.2 (mean) ± 4.1 (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMB-REC*</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>13</td>
</tr>
<tr>
<td>Black</td>
<td>2</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1</td>
</tr>
<tr>
<td>Cigarette smoker</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>15</td>
</tr>
<tr>
<td>Regular multivitamin use</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
</tr>
<tr>
<td>- 150 µg iodine/serving (n=2)</td>
<td></td>
</tr>
<tr>
<td>- no iodine (n=8)</td>
<td></td>
</tr>
<tr>
<td>- unknown iodine content (n=2)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Regular salt use</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td>Salt use in the previous 24 hours</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
</tr>
<tr>
<td>- iodized (n=1)</td>
<td></td>
</tr>
<tr>
<td>- non-iodized (n=3)</td>
<td></td>
</tr>
<tr>
<td>- unknown iodine content (n=2)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>10</td>
</tr>
</tbody>
</table>

*OMB-REC= Office of Management and Budget "Race & Ethnicity" Codes
FIGURES

Figure 1. Hourly median breastmilk iodine concentrations (µg/L) before and following 600 µg acute potassium iodide ingestion.